Epock: rapid analysis of protein pocket dynamics
نویسندگان
چکیده
SUMMARY The volume of an internal protein pocket is fundamental to ligand accessibility. Few programs that compute such volumes manage dynamic data from molecular dynamics (MD) simulations. Limited performance often prohibits analysis of large datasets. We present Epock, an efficient command-line tool that calculates pocket volumes from MD trajectories. A plugin for the VMD program provides a graphical user interface to facilitate input creation, run Epock and analyse the results. AVAILABILITY AND IMPLEMENTATION Epock C++ source code, Python analysis scripts, VMD Tcl plugin, documentation and installation instructions are freely available at http://epock.bitbucket.org. CONTACT [email protected] or [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
منابع مشابه
Investigation the Mechanism of Interaction between Inhibitor ALISERTIB with Protein Kinase A and B Using Modeling, Docking and Molecular Dynamics Simulation
The high level of conservation in ATP-binding sites of protein kinases increasingly demandsthe quest to find selective inhibitors with little cross reactivity. Kinase kinases are a recently discovered group of Kinases found to be involved in several mitotic events. These proteins represent attractive targets for cancer therapy with several small molecule inhibitors undergoing different ph...
متن کاملEnzyme specificity under dynamic control II: Principal component analysis of alpha-lytic protease using global and local solvent boundary conditions.
The contributions of conformational dynamics to substrate specificity have been examined by the application of principal component analysis to molecular dynamics trajectories of alpha-lytic protease. The wild-type alpha-lytic protease is highly specific for substrates with small hydrophobic side chains at the specificity pocket, while the Met190-->Ala binding pocket mutant has a much broader sp...
متن کاملComparative Investigation of R213G Mutation in DNA-Binding Domain of P53 Protein via Molecular Dynamics Simulation
Introduction: P53 is a tumor suppressor protein with numerous missense mutations identified in its gene. These mutations are observed in a vast number of cancers. R213G is one of them which has a role in metastatic lung cancers. In this research, R213G was studied in comparison with the wild type via molecular dynamics simulation. Method: For the three-dimensional structure of the wild-type P53...
متن کاملComparative Investigation of R213G Mutation in DNA-Binding Domain of P53 Protein via Molecular Dynamics Simulation
Introduction: P53 is a tumor suppressor protein with numerous missense mutations identified in its gene. These mutations are observed in a vast number of cancers. R213G is one of them which has a role in metastatic lung cancers. In this research, R213G was studied in comparison with the wild type via molecular dynamics simulation. Method: For the three-dimensional structure of the wild-type P53...
متن کاملEnzyme specificity under dynamic control II: Principal component analysis of -lytic protease using global and local solvent boundary conditions
The contributions of conformational dynamics to substrate specificity have been examined by the application of principal component analysis to molecular dynamics trajectories of -lytic protease. The wild-type -lytic protease is highly specific for substrates with small hydrophobic side chains at the specificity pocket, while the Met190→Ala binding pocket mutant has a much broader specificity, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 31 شماره
صفحات -
تاریخ انتشار 2015